Tracing the inputs and fate of marine and terrigenous organic matter in Arctic Ocean sediments: A multivariate analysis of lipid biomarkers
نویسندگان
چکیده
An understanding of the carbon cycle within arctic sediments requires discrimination between the terrigenous and marine components of organic carbon, insight into the removal mechanisms for labile carbon during burial and appreciation of shelf-to-basin processes. Using a large data set of multiple molecular organic markers (alkanes, alkanols, sterols, saturated and unsaturated fatty acids, dicarboxylic acids), we apply (1) principal components analysis (PCA) to obtain a robust comparison of biomarker compositions in Arctic Ocean sediments, (2) geometric mean (GM) linear regression of the PCA variables to estimate the relative contributions of labile/marine and stable/terrigenous sources to each biomarker and (3) the slope of the GM regression of each biomarker with TOC to provide a novel measure of the removal rate of each biomarker relative to phytol. The PCAand TOC-based indices generally increase together: biomarkers with very high TOC-based removal rates such as the saturated and unsaturated n-alkanoic acids generally have a high labile/marine content from PCA, while the sterols have low removal rates, but exhibit a range of labile/marine content values and the n-alkanes and n-alkanols have low values for both. A dominant feature of all PCA models examined is a progressive decrease in the autochthonous/marine biomarkers with each increase in sediment core depth, which points to a universal diagenetic alteration of organic carbon with depth in the cores. The PCA model also displays a shelf to basin trend that is non-diagenetic and implies the ongoing (centuries or more) delivery of long-chain n-alkanes, n-alcohols and nalkanoic acids in a matrix that is pre-formed and well-preserved within the sediments. Terrigenous biomarker distributions within the PCA model suggest that atmospheric transport of plant waxes in aerosols and the water borne transport of very fine plant macerals likely have significant roles in the export of these vascular plant biomarkers to the basins. Biomarker ratios and profiles of the PCA-based labile/marine content with core depth indicate that the PCA model is more strongly influenced by the biomarker lability than the marine content, while increases in the marine content are largely responsible for the shifts in composition for near-surface core sections. r 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean
Marine dissolved organic matter (DOM) contains one of the largest exchangeable organic carbon pools on Earth. Riverine input represents an important source of DOM to the oceans, yet much remains to be learned about the fate of the DOM linking terrestrial to oceanic carbon cycles through rivers at the global scale. Here we use ultrahigh-resolution mass spectrometry to identify 184 molecular form...
متن کاملHistorical and geographical variations of sources and transport of terrigenous organic matter within a large-scale coastal environment
Elemental and molecular analyses indicate that the sources and inputs of terrigenous organic matter (OM) to the upper St. Lawrence system have been in ̄uenced by increased discharges of industrial solid organic wastes from the pulp and paper industry following its expansion in the 1920±1940's. Moderately altered lignin-rich particles from a combination of natural and anthropogenic sources predom...
متن کامل30. Molecular Indicators of the Supply of Marine and Terrigenous Organic Matter to a Pleistocene Organic-matter-rich Layer in the Alboran Basin (western Mediterranean Sea)
The organic matter in sediment series across two organic-matter–rich layers from Ocean Drilling Program Hole 977A drilled in the Alboran Basin of the Western Mediterranean Sea has been characterized by organic geochemical methods. Organic carbon contents reached more than 2% in the organic-matter–rich layer and was ~1% in the background sediment under and overlying it. Molecular compositions of...
متن کاملTerrigenous dissolved organic matter in the Arctic Ocean and its transport to surface and deep waters of the North Atlantic
[1] Surface waters of the Arctic Ocean have the highest concentrations of dissolved organic carbon (DOC) and terrigenous dissolved organic matter (DOM) of all ocean basins. Concentrations of dissolved lignin phenols in polar surface waters are 7-fold to 16-fold higher than those in the Atlantic and Pacific oceans, and stable carbon isotopic compositions of DOM are depleted in C by 1–2% relative...
متن کاملDissolved organic nitrogen dynamics in the Arctic Ocean
a r t i c l e i n f o Little is known about the distribution and dynamics of dissolved organic nitrogen (DON) within Arctic Ocean surface waters, though seasonal inputs from both rivers and marine phytoplankton production are likely important. Here we combine multiple datasets to provide the first quasi-synoptic view of DON concentrations in the summertime Arctic Ocean Polar Surface Layer (PSL)...
متن کامل